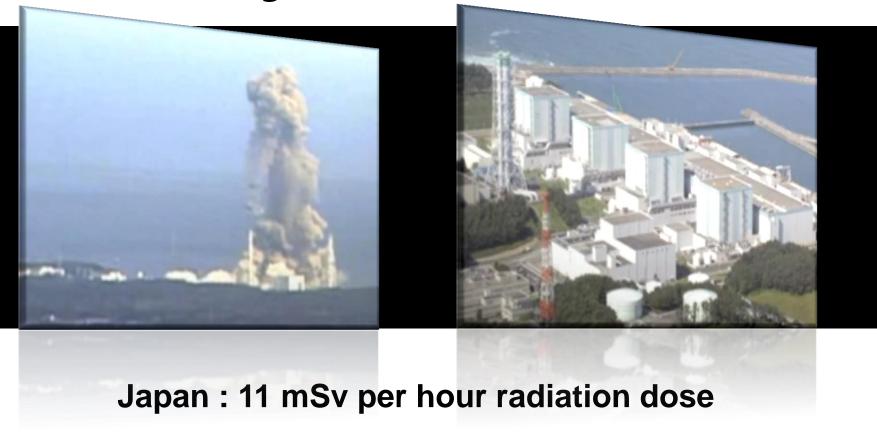
Korean Cardiology-Related Societies Joint Scientific Congress 2015

Radiation exposure in the cath lab safety and precautions

Joon Won Kang, RT


Cardiovascular Center, Anam Hospital Korea University Medical Center

"Radiation is one of those things that people talk about

But

Never really pay much **attention to**"

Fukushima Accident Magnitude 9.0 (2011.3.11)

IAEA: 400 mSv per hour radiation dose

(2011.3.15)

진단 방사선 피폭량, 연간 한도 넘어

YTN

2014-01-22

CT 검사 등으로 방사선 피폭량은 늘어나는데 환자들에게는 피폭 기준조차 마련되지 않았다는 사실, YTN이 보도해드렸는데요.

연구해보니 우리 국민의 방사선 피폭량이 연간 한도를 넘어선 것으로 나타났습니다.

[인터뷰:석길칠, 심근경색 수술 환자 (80세)] "병원에서 하라는 대로 하는 거죠. 시키는대로 하는 거지 뭐. 검사를 받아야 한다니까 하는 거죠. (CT 촬영) 2~3번 한 거죠."

최근 5년 동안 진단용 방사선 사용량을 분석했더니 검사 건수가 35%나 늘었습니다.

엑스레이나 CT, 치과촬영 등을 합쳐 국민 한 사람이 1년에 4.6번이나 받았습니다.

1년 피폭량도 5년 전 0.9밀리시버트에서 1.4밀리시버트로 51%나 높아졌습니다.

일반인의 피폭량 한도인 1밀리시버트를 넘어선 것입니다.

특히 방사선을 가장 많이 발생하는 CT 촬영이 절반 이상을 차지합니다.

It's a Serious Problem

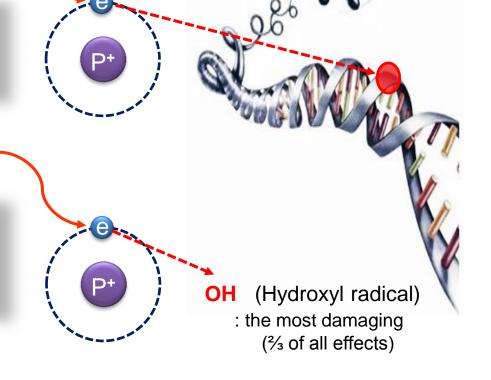
It's a Negligible Problem

It's a Serious Problem

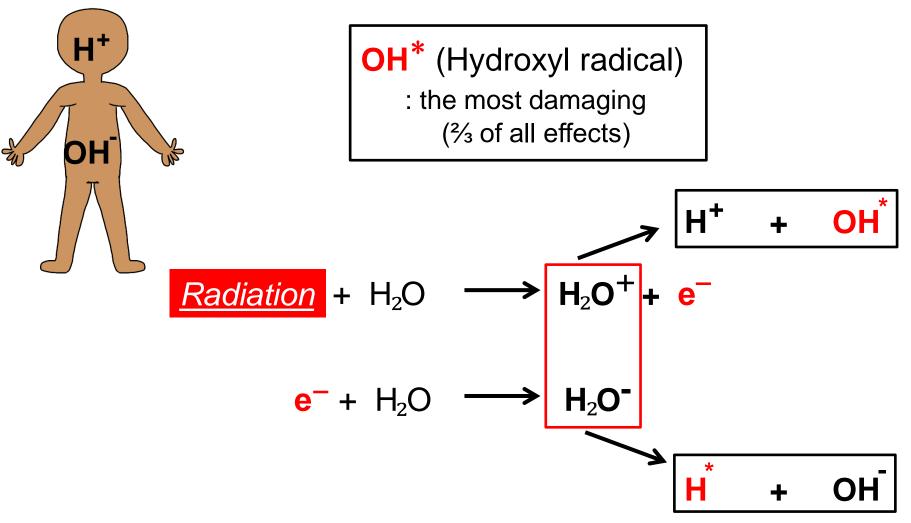
Radiation Induced

Cancer Risk

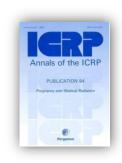
Biologic effect of radiation



Direct action: 25%


- Direction interact with target
- High LET

Indirect action: 75%


 Formation of reactive free radical-> DNA damage

Indirect Effect (Radiolysis)

Prog Nucl Acid Res Mol Bio 1988;35:95 Medical imaging and radiation protection p80

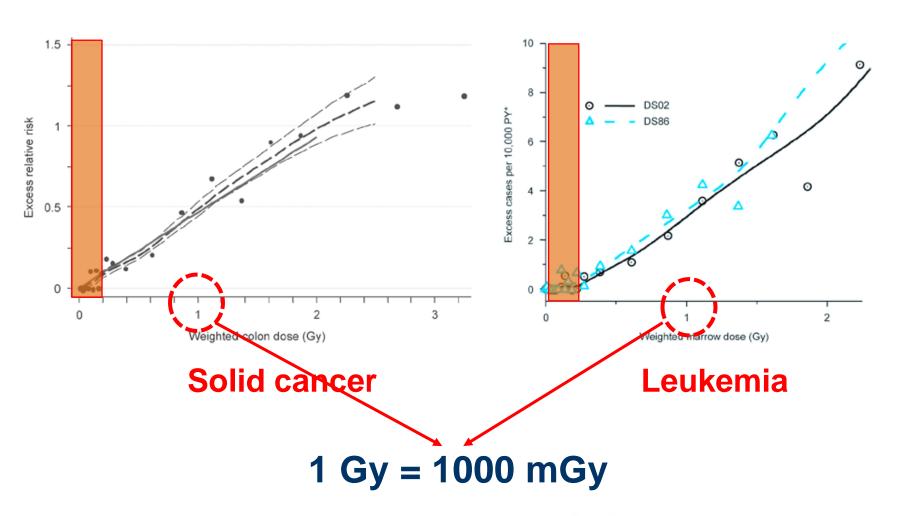

risk

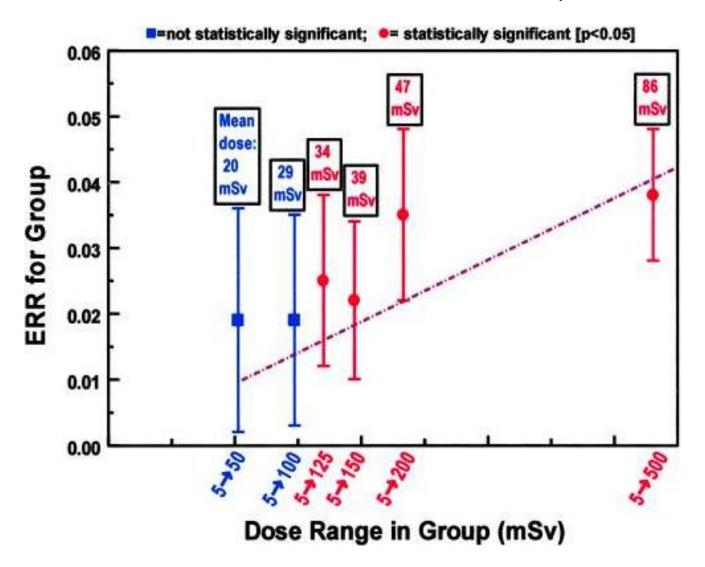
Fetal radiation risk

Radiation risks are most significant during

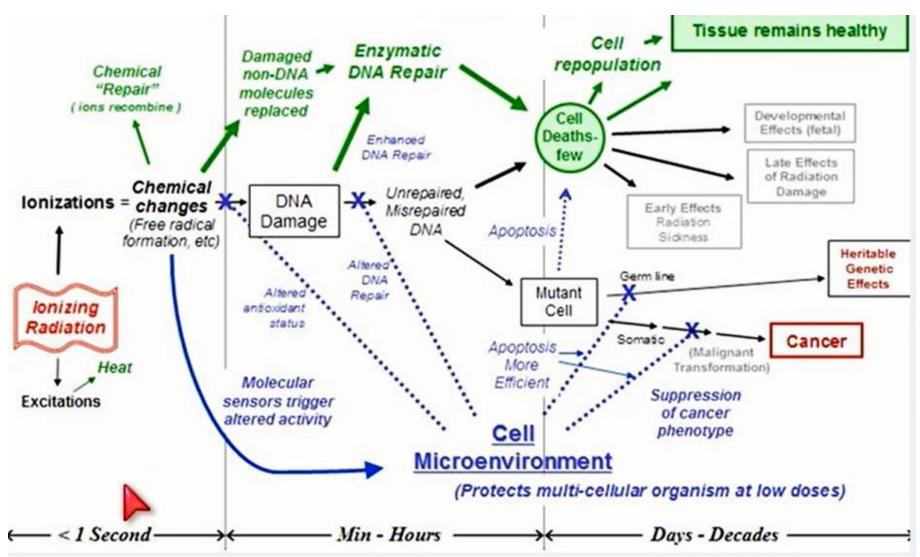
organogenesis and in the early fetal period, somewhat less in the 2nd trimester, and least in the 3rd trimester

from ICRP 84, Pregnancy and radiation


It's a Negligible Problem



Excess risk of developing solid cancer in LSS


Solid cancer risks among atomic-bomb survivors 1958-1998

Estimated excess relative risk of mortality from solid cancer in A-bomb survivor (< 500 mSv)

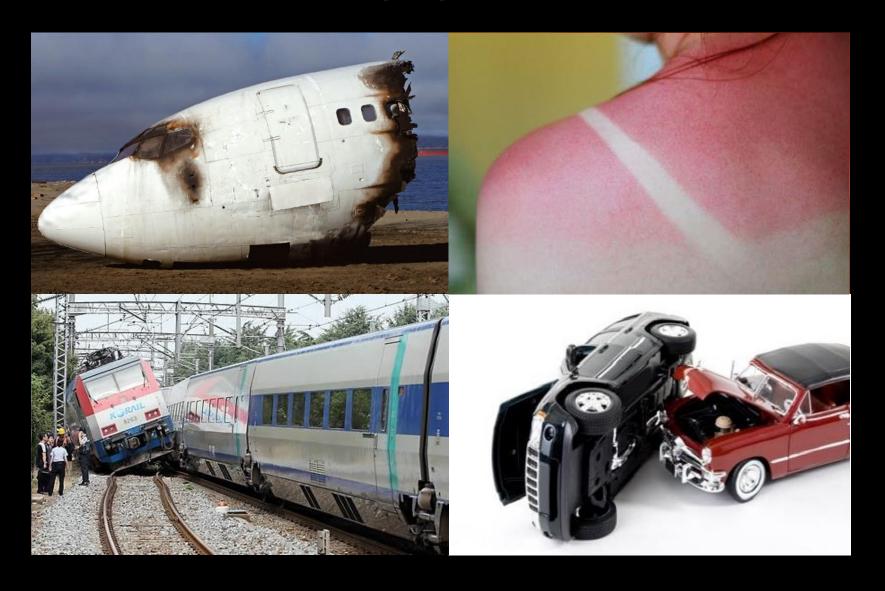
Classic Paradigm of Radiation Injury

Risks in a pregnant population Not exposed to radiation

Risks:

- Spontaneous abortion > 15%

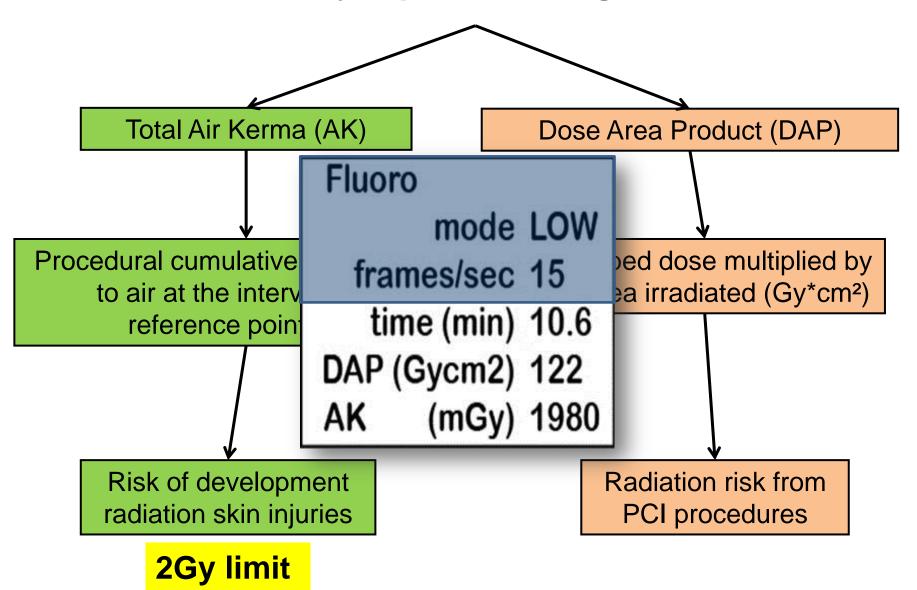
- Incidence of genetic abnormalities 4-10%

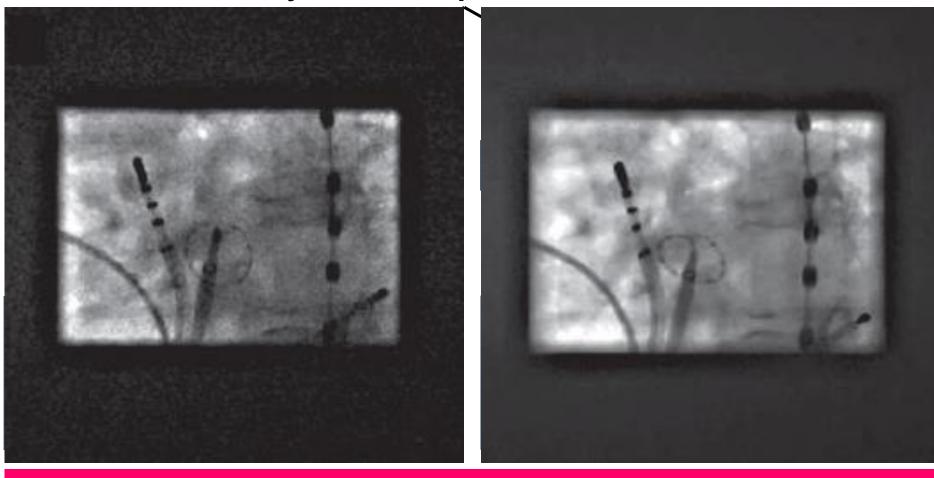

- Intrauterine growth retardation 4%

- Incidence of major malformation 2-4%

Probability of bearing healthy children as a function of radiation dose

Dose to conceptus (mGy) above natural background	Probability of no malformation	Probability of no cancer (0-19 years)
0	97	99.7
1	97	99.7
5	97	99.7
10	97	99.6
50	97	99.4
100	97	99.1
>100	Possible	Higher


It's a Negligible Problem


Benefit vs Risk

Two standard parameters to evaluate pt X-ray exposure during PCI

X-ray tube operation time

..... need to minimize fluoroscopy time but mainly the number of cine images

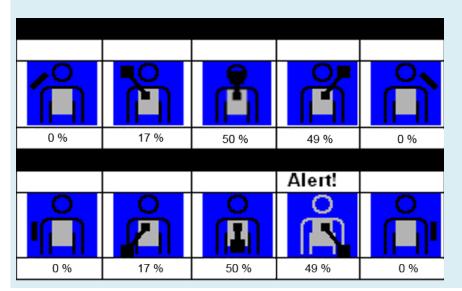
Practical ways to reduce radiation dose for patients & staff during Device implantations and Electrophysiological procedures

Type of study	Dose to patient mSv median and range	
Diagnostic EP study	3.2 1.3–23.9	
Ablation procedure	15.2 1.6–59.6	
AF	16.6 6.6–59.6	
AT – AVNRT – AVRT	4.4 1.6–25	
VT	12.5 3-≥45	
VVI/DDD PM or ICD implant	4 1.4–17	
CRT implant	22 2.2–95	
Coronary angiography	7 2.0–16	
Percutaneous coronary intervention	15 7–57	

EP Procedure time

(AF, AFL, PSVT, PVC, VT.....)

ex) **AF**


Cumulative fluoroscopy time: 132min

DAP (fluoroscopy): 183,695 mGycm²

DAP (exposure): 10,861 mGycm²

Total DAP :194 Gy.cm₂ * 0.2 = 39mSv

Cumulative Air Kerma: 1,320 mGy

PCI Procedure time

(Simple PCI,CTO,PTA.....)

ex) CTO

Cumulative fluoroscopy time: 119min

DAP (fluoroscopy): 294,821 mGycm²

DAP (exposure): 258,437 mGycm²

Total DAP :553 Gy.cm₂ * 0.2 = 111mSv

Cumulative Air Kerma: 7,391 mGy

Fluoroscopically Guided Interventional Procedures:

Radiology

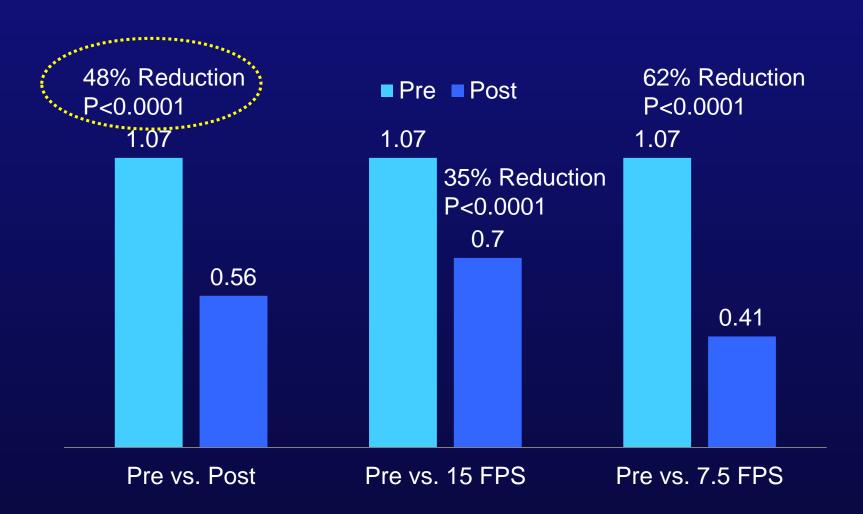
A Review of Radiation Effects on Patients' Skin and Hair¹

e 2	
neral Advice to Be	Provided to Patients and Treating Physicians
Skin Dose	
d Range (Gy)	Advice to Patient
0-2	No need to inform patient, because there should be no reports skin changes, then treat in response to the signs and symptoms
2-5	Advise patient that erythema may be observed Advise patient that erythema Advise patient to call you if skin changes cause physical disconnect.
5–10	Advise patient to perform self-examination or ask a partner to examine for skin effects from about 2 to 10 weeks after the procedure; tell patient where
	skin effects would most likely occu self-examination or ask a partner
	other treating physician and to inform areasing physician that injury may be
	due to radiation; radiologist should also provide that physician with medical details of where the radiation-related skin effects are likely to occur
10–15	Medical follow-up is appropriate; advice is same as that for band B but also
	advise dermatologist or other treating prolonged due to radiation dose and Medical follow-up is appropriate
	and monitoring of wound progression mat be required; pain could become a concern if doses were in the higher range of this band
>15	Medical follow-up is essential, nature and frequency of which depending on estimated radiation dose; advice is same treating physician that the wound could progress to diceration or necrosis
	Skin Dose Range (Gy) 0-2 2-5

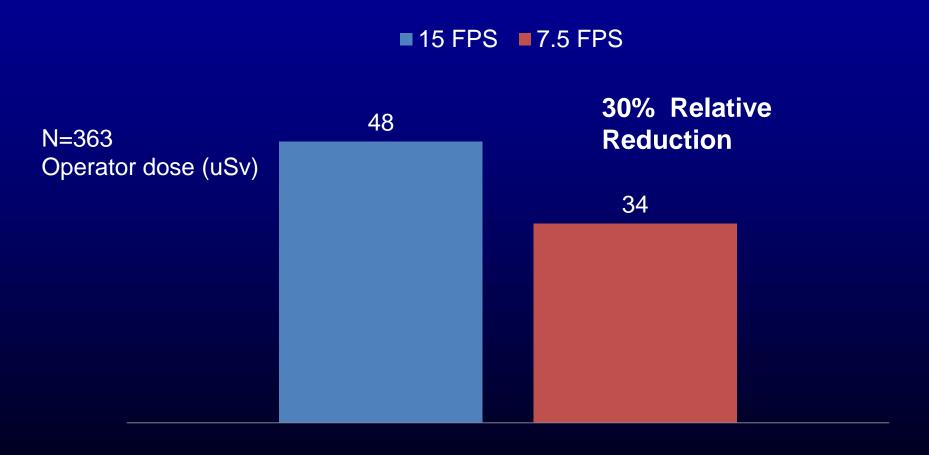
Radiology: Volume 254: Number 2—February 2010

Philips FD 10 Default Setting	Fluoro flavor 1(Low)	Fluoro flavor 2 (Normal)	Fluoro flavor 3 (High)
Pulsed Fluoro Frame speed	15	15	30
Dose rate limitation (microGy/s)	697	1395	1395
Focus	Smalllest	Smalllest	Smalllest
Spectral Filter CU	0.4	0.1	0.1
Spectral Filter Al	1	1	1

현재 FD 10 (#1) Setting CAG	Fluoro flavor 1(Low)	Fluoro flavor 2(Normal)	Fluoro flavor 3(High)
Frame speed	7.5	15	15
Dose rate limitation (microGy/s)	349	697	1395
Focus	Smalllest	Smalllest	Smalllest
Spectral Filter CU	0.9	0.4	0.1
Spectral Filter Al	1	1	1


(#3 EP) Setting = Philips FD 10 EP Default	Fluoro flavor 1(Low)	Fluoro flavor 2(Normal)	Fluoro flavor 3(High)
Frame speed	7.5	15	15
Dose rate limitation (microGy/s)	140	349	697
Focus	Smalllest	Smalllest	Smalllest
Spectral Filter CU	0.9	0.9	0.4
Spectral Filter Al	1	1	1

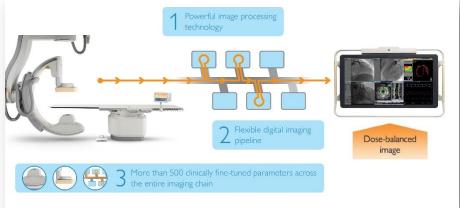
New Equipment can reduce Dose

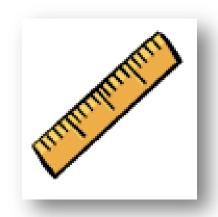

- Before and after study, Phillips Allura (n=605)
- Algorithms to reduce dose include:

- ✓ Reduces <u>Detector dose</u> rate
- ✓ Increased thickness of filters
- ✓ Automatically uses <u>lowest dose</u> possible based on patient
- ✓ Reduce FPS from 15 to <u>7.5 FPS</u>

Radiation Dose Reduction in the Cardiac Cath Lab Utilizing a Novel Protocol

Randomized Trial of 15 FPS vs. 7.5 FPS for Fluoro





Distance

Shield

Minimize time

Patient - Table

0.5 mm

DAP/AK

Staff - Maximize

(90~95% protection)

Practical ways to reduce radiation dose for patients and staff during device implantations and electrophysiological procedures

Hein Heidbuchel^{1*}, Fred H.M. Wittkampf², Eliseo Vano³, Sabine Ernst⁴, Richard Schilling⁵, Eugenio Picano⁶, and Lluis Mont⁷

		Lower doses	Higher doses
Operator-dependent	Operator background	Expert	Beginner
	Training with simulators	Yes	No
	Awareness	Radiation aware	Radiation unaware
	Written report	Includes KAP/DAP	Omits KAP/DAP
	Projection	RAO	AP or LAO
	Pulsed fluoroscopy	Low rate (≤ 6 fps)	High rate (>12.5 fps)
	Cine duration	Short	Long
	Cine substitution by stored fluoroscopy	Yes	No
	Fluoroscopy during catheter withdrawal	No	Yes
	Collimation	Optimized, and adapted	Wide open, and fixed throughout the procedure
	Pelvic radiation	Avoided	During introduction and removal of the catheters
	Anaesthesiologists/AP	Allowed to halt the procedure	Also exposed when in close proximity
Patient-dependent	Body habitus	Lean	Obese
	Arrhythmic lesion to be ablated	Supraventricular tachycardia	Atrial fibrillation or VT
Technology-dependent	X-ray system	Tuned for the EP, inspected for QC and maintained	No specific EP settings, not tested, not maintained
	Combination with CT (pre-procedural/ rotational)	No	Yes
	Non-fluoroscopic mapping systems	Yes (Ensite; Carto; Mediguide;)	No
	Shielding	Above and below the table; cabin	Minimal, only above the table

"Heavy Foot" Syndrome

Do Not step on fluoroscopy pedal when not looking at screen

진단 방사선 피폭량, 연간 한도 넘어

YTN

2014-01-22

ear Formatting

CT 검사 등으로 방사선 피폭량은 늘어나는데 환자들에게는 피폭 기준조차 마련되지 않았다는 사실, YTN이 보도해드렸는데요.

연구해보니 우리 국민의 방사선 피폭량이 연간 한도를 넘어선 것으로 나타났습니다.

[인터뷰:석길칠, <u>심근경색</u> 수술 환자 (80세)] "병원에서 하라는 대로 하는 거죠. 시키는대로 하는 거지 뭐. 검사를 받아야 한다니까 하는 거죠. (CT 촬영) 2~3번 한 거죠."

최근 5년 동안 진단용 방사선 사용량을 분석했더니, 검사 건수가 35%나 늘었습니다.

엑스레이나 CT, 치과촬영 등을 합쳐 국민 한 사람이 1년에 4.6번이나 받았습니다.

1년 피폭량도 5년 전 0.9밀리시버트에서 1.4밀리시버트로 51%나 높아졌습니다.

일반인의 피폭량 한도인 1밀리시버트를 넘어선 것입니다.

특히 방사선을 가장 많이 발생하는 CT 촬영이 절반 이상을 차지합니다.

Benefit versus Risk

Controlling dose to patient will help control dose to staff

Korean Cardiology-Related Societies Joint Scientific Congress 2015

• Date: 17(Fri.)-18(Sat.) April, 2015 • Venue: BEXCO, Busan

Thank you for your time!

